PLENARY PRESENTATION

LEARNING FROM DIATOMS: BIOMIMETIC APPROACHES

Ille C. Gebeshuber1,2,3

1 Universiti Kebangsaan Malaysia, Malaysia
2 Institut of General Physics & TU BIONIK Center of Excellence, Vienna University of Technology
3 Austrian Center of Competence for Tribology, AC2T research GmbH, Austria

We live in interesting times. Biology has changed from being very descriptive to a science that can be acknowledged and understood (in terms of concepts) by researchers coming from “hard sciences” such as chemistry, physics, mathematics and engineering. The “hard sciences” rely on experimental, empirical, quantifiable data or the scientific method, and focus on accuracy and objectivity. The amount of causal laws in the new biology (indicated by the ratio of causal versus descriptive knowledge) is steadily growing. Additionally, a new field that can be called “Biological Physics” is currently emerging. The languages of the various fields of science increasingly get compatible, and the amount of collaborations and joint research projects between researchers coming from the “hard sciences” and biologists has grown tremendously over the last years. Diatom biomimetics, i.e., technology transfer from diatom research to engineering, is especially promising. Biomimetics is a growing field that has the potential to drive major technical advances. It might substantially support successful mastering of current challenges for humankind. Various examples will be given to illustrate these points, including a novel micropump inspired by chain-forming diatoms, diatom hinges and interlocking devices as inspiration for emerging three-dimensional micro-electro-mechanical systems and diatom spores and resting stages as inspiration for architecture.

Microfluidic simulation of a colonial diatom chain reveals oscillatory movement
Acta Botanica Croatia, in press

Gebeshuber I.C., Gruber P. and Drack M. (2009)
A gaze into the crystal ball - biomimetics in the year 2059

Exploring the innovational potential of biomimetics for novel 3D MEMS

Bacilli, green algae, diatoms and red blood cells - how nanobiotechnological research inspires architecture
Chapter IX in: "Bio-Inspired Nanomaterials and Nanotechnology" (Ed. Yong Zhou), Nova Science Publishers 2009, in press